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Abstract 

To facilitate pairing of aircraft while meeting a 
schedule, the pair-scheduling problem for landing 
aircraft in Very Closely Spaced Parallel Approaches 
was studied.  An earlier prototype was adopted and 
the scheduling algorithm was extended in several 
ways to improve the solution quality and expand the 
range of constraints it could handle. This paper 
presents the scheduling problem formulation, as well 
as enhancements made to an earlier prototype that 
made it suitable for application in a human-in-the-
loop simulation carried out recently at NASA Ames 
Research Center. Experimental data from the 
simulations as well as an extensive set of stress tests 
are analyzed and discussed. Results suggest the 
algorithm succeeded in suggesting aircraft pairs 
acceptable to the air traffic controllers in over 97% of 
the cases.  Evaluating the performance and scalability 
characteristics of the algorithm demonstrates its 
effectiveness in discovering feasible aircraft pairs 
that meet all the sequencing, separation, pair-group, 
and runway assignment constraints. Overall, the high 
solution quality and short runtime makes the 
proposed algorithm a suitable and attractive 
candidate for use in a real-time aircraft-pairing 
application. 

Introduction 
Increasing the airport arrival rates is an 

important factor towards meeting the growing 
demand in air traffic. The concept of Very Closely 
Spaced Parallel Runway (VCSPR) operations is 
considered to be a crucial step for realizing 
significant increase in arrival throughput during poor 
weather conditions when instrument meteorological 
conditions apply. It aims to maximize the utilization 
in parallel runway systems that may be spaced as 
close as 750 ft apart, and thus increase the landing 
capacity at hub airports without significant increase 
to the airport footprint. 

 

Several operational concepts have been 
developed for simultaneous approaches [1–3]. All of 
these concepts assume the aircraft are paired by air 
traffic controllers before their approach clearances 
are given. While there has been much research for 
arrival scheduling, the study by Kupfer [4] represents 
the only published work that specifically targeted 
simultaneous parallel approaches with lateral and 
staggered spacing of only a few seconds. Conducting 
research into paired arrival scheduling has other 
practical long-term applications as well. The insights 
gained from these studies could help extend the 
capabilities of new and improved tools for terminal 
area scheduling such as those currently under 
development [5]. 

This paper presents an improved algorithm for 
finding aircraft pairs.  This algorithm was developed, 
and tested, and used by air traffic controllers for a 
HITL simulation conducted recently at NASA Ames 
Research Center to study the role of air traffic control 
[6].  The prototype development started with a 
Genetic Algorithm (GA) developed by Kupfer [4] as 
a starting point.  Kupfer’s algorithm was quite 
successful at finding pairs in the context of the 
simplified problem presented in [4].  However, under 
the requirements of the HITL simulations and based 
on detailed evaluation during an initial pilot study, it 
became apparent that Kupfer’s pairing algorithm did 
not perform very well under the new requirements 
and constraints and that the algorithm required 
several adjustments and enhancements. Some of 
these enhancements were related to the problem 
modeling, while others targeted specific performance 
characteristics. This paper presents the formulation of 
the new pair-scheduling problem, and chronicles 
enhancements implemented to make it suitable for 
use in the HITL simulations [6].  Experimental 
results are presented and discussed, confirming the 
effectiveness of the resulting algorithm. 

The rest of this paper is organized as follows.  
First, some introductory background is presented 
describing the operational concept under 



 

investigation, the motivation for developing the 
pairing algorithm, and an overview of the previous 
body of related research.  Next, the formulation of the 
pair-scheduling problem is presented, followed by a 
brief discussion of the computational complexity of 
the pair-scheduling problem.  Next, the rationale for 
the solution methodology adopted in the current work 
is provided.   This is followed by the description of 
various modifications, adjustments and enhancements 
to the problem modeling, exploration and solution 
space control, as well as performance optimization 
that were implemented to improve Kupfer’s 
algorithm in order to construct a pairing algorithm 
that was suitable for a real-time HITL simulation.  
Experimental results from the HITL simulations as 
well as a large number of arrival scenarios generated 
to conduct stress testing on the resulting pairing 
algorithm are presented and discussed next. The 
paper ends with some concluding remarks, presenting 
a summary of the key contributions of this work, and 
providing some directions for further research. 

Background 
The Federal Aviation Administration (FAA) 

recognizes that significant capacity is lost when 
simultaneous operations performed under visual 
conditions are not operational under poor weather 
conditions.  As a part of its NextGen plan [7], the 
FAA aims to reduce the minimum allowable spacing 
between runways used for simultaneous operations in 
poor visibility, currently 4300 ft., by implementing 
revised standards and improved technologies. Table 1 
shows a partial listing of airports containing parallel 
runways with spacing below 4300 ft. All of these 
airports experience severe reduction in aircraft 
landing capacities under poor weather conditions 
when simultaneous approaches are not possible. 

Several concepts that address and could benefit 
from the revision of separation standards and 
technologies include Simultaneous Offset Instrument 
Approaches (SOIA) [8], Airborne Information 
Lateral System (AILS) [2] and Terminal Area 
Capacity Enhancing Concept (TACEC) [3]. The role 
of the air traffic controllers during simultaneous 
approaches is different for each of the above 
concepts. However, all of these concepts assume that 
the air traffic controller will assign aircraft to pairs 
with the knowledge that they are properly equipped. 
There does not exist any formal tool or process by 
which pairing is done, in the current NAS. 

Table 1. Airports with Parallel Runways Below 
4300 ft Spacing 

Airport                                    Runway Spacing 
Los Angeles (LAX)                 750 ft 
San Francisco (SFO)             750 ft 
Seattle (SEA)                 800 ft 
Newark  (EWR)             900 ft 
Houston  (IAH)           1000 ft 
Las Vegas (LAS)             1000 ft 
Atlanta (ATL)                 1000 ft 
Dallas-Ft Worth (DFW)          1200 ft  
Pittsburgh (PIT)           1200 ft 
St. Louis (STL)           1300 ft 
Boston (BOS)           1500 ft 
Orlando (MCO)           1600 ft 
New York (JFK)          3000 ft  
Minneapolis (MSP)          3380 ft 
Memphis (MEM)                    3400 ft 
Raleigh (RDU)           3400 ft 
Phoenix(PHX)           3565 ft 
Salt Lake City (SLC)          3700 ft 
Detroit (DTW)           3800 ft 

 

A recent study conducted at NASA Ames 
Research Center carried out HITL simulations to 
investigate the allocation of tasks under TACEC for 
air traffic controllers [6].  This required an algorithm 
for pairing aircraft under different levels of 
automation in order to investigate the appropriate 
human/automation mix for the given task. The 
highest level of automation required a pairing 
algorithm that would suggest aircraft pairs to the 
controllers. This paper describes the problem 
formulation and the development of the pairing 
algorithm needed for these HITL simulations.  In 
these simulations, finding and suggesting pairs was 
handled by automation while controllers handled the 
task of evaluating and accepting or rejecting the 
suggested pairs.  

Since the pairing problem is very much related 
to scheduling aircraft landing, a concise overview of 
previous related work in scheduling is provided next. 
Scheduling problems arise in numerous applications 
and as a result, they have been studied extensively in 
the literature. A general survey and classification of 
scheduling problems can be found in [9, 10], while 
[11, 12] present overview of the scheduling problems 
encountered in aircraft and airline scheduling.  



 

The aircraft arrival-scheduling problem has also 
been studied extensively.  The idea of Constrained 
Position Shifts (CPS) was introduced in [13] as a 
means for improving the arrival sequence, while [14] 
presented a dynamic programming algorithm to 
optimize the aircraft arrival sequence and took 
advantage of CPS to increase efficiency.  Other 
heuristics and approaches using genetic algorithms 
[15-19], dynamic programming [20, 21], mixed-
integer linear programming with linear relaxations 
[22–24], branch and bound techniques [22, 35] or a 
combination of the above have also been applied to 
the arrival-scheduling problem. 

The arrival scheduling problems are often 
broadly categorized into static [23] (offline) and 
dynamic (online) [17], depending on whether or not 
complete knowledge about the set of aircraft that are 
going to land is available ahead of time.  In this 
paper, the focus is on the static case.  Another 
classification of the arrival scheduling problems is 
into single vs. multiple runway landing.  While much 
of the previous research on scheduling arrival landing 
focused on single runway, there have been several 
studies including [22, 26, 27] that discuss the 
multiple runway case or extend their single runway 
approaches to the multiple runway condition. 

The scheduling problem for simultaneous 
landing of aircraft to very closely parallel runways is 
markedly different and more constrained than that of 
scheduling for independent landing to multiple 
runways.  This problem was formulated recently in 
[4] and solved exactly using a mixed integer linear 
programming (MILP) formulation. As is often the 
case, the running time achieved using the proposed 
MILP formulation is prohibitively long, making the 
approach unsuitable for real-time application.  
Therefore, a heuristic technique based on genetic 
algorithm [28] fortified with a greedy heuristic was 
also presented in [4]. 

In this paper, the greedily enhanced genetic 
algorithm of Kupfer [4] was adopted as the base 
implementation.  Then, using new requirements and 
feedback received during an initial pilot study, 
several enhancements were made to create a pairing 
algorithm suitable for real-time HITL simulation 
conducted in [6]. 

Concept Description 
The concept investigated in the current study is 
TACEC [3], developed collaboratively by Raytheon 
and NASA Ames Research Center. The TACEC 
system allows multiple aircraft to fly in close 
formations during the final approach to enable 
simultaneous instrument approaches for landing 
aircraft on very closely spaced parallel runways that 
are as close as 750 ft apart.  This would increase the 
landing capacity of the airports with closely spaced 
parallel runways during low visibility conditions, 
achieving arrival rates comparable to visual approach 
operations.  

 
Figure 1.  Approach Pattern for Aircraft Pair 

 

The process involves pairing aircraft around 30 
minutes before the aircraft arrives at the terminal 
boundary.  As shown in Figure 1, the actual coupling 
for the approach is intended to occur 12 nm from the 
runway threshold.  After this coupling point, the 
coupled aircraft converge over a 10nm distance at a 
6° angle.  For the last 2nm prior to the runway 
threshold, the paired aircraft would fly on parallel 
flight path segments. 

The following aircraft in a pair must be flying 
within a safe zone, which is defined by a Lower 
Pairing Boundary (LPB) and an Upper Pairing 
Boundary (UPB) behind the lead aircraft.  The LPB 
is defined to minimize the risk of collision in case of 



 

a blunder by the lead aircraft, while the UPB is 
defined in order for the follower aircraft to avoid its 
encounter with the wake vortex of the lead aircraft.  
In this study, the LPB and UPB are set to 5s and 25s 
behind the lead aircraft, respectively. Figure 2 
demonstrates the notions of LPB and UPB and the 
safe zone.  The pairing algorithm is instructed to 
schedule the pairs in order for the follower aircraft to 
be situated in the middle of the safe zone. The 
concept assumes Differential Global Positioning 
System (DGPS), augmented ADS-B, 4-dimensional 
flight management system (4D-FMS), wind detection 
sensors onboard the aircraft, and cockpit automation 
that are not extant in today’s NAS. 

 
Figure 2.  Safe Zone for Pairing 

 

To ensure safe operation, a minimum separation 
is maintained between landing aircraft that do not 
belong to the same pair. This separation is 
determined based on the wake separation category of 
the aircraft involved.  The following four categories 
are recognized: Small (S), Light (L), B757 (7), and 
Heavy (H), in accordance with [4]. The enforced 
wake separation in seconds for various combinations 
is provided in a wake separation matrix as shown in 
Table 2. 

 

Table 2. Enforced Wake Separation Matrix 
 Following Aircraft 

 S L 7 H 
S 98 83 83 72 
L 147 83 83 72 
7 180 125 125 106 

 
 

Leading 
Aircraft 

H 213 152 152 106 
 

Another important prerequisite for the HITL 
simulations was a careful redesign of the airspace so 
that the arrival traffic can safely follow their 
prescribed 4D trajectories from their respective 
arrival streams [6].  This involved a split towards the 
end of the arrival streams to enable routing from each 
arrival stream to land an arriving aircraft on either of 
the two runways involved.   The aerial view of the 
redesigned airspace used in this study, along with the 
geometry of the five arrival streams (Big Sur, 
Modesto, Oceanic, Point Reyes, Yosem) that were 
part of the HITL simulations are shown in Figure 3 in 
the vicinity of runways 28L and 28R at San Francisco 
airport (SFO).  The flying direction of the arrival 
aircraft is shown using yellow arrows before the split 
points and using pink arrows after the split points 
along the arrival streams. The final portion of the 
paths starting from the coupling point and ending on 
the runways is shown in light green.  This portion 
corresponds to the approach patterns of an aircraft 
pair illustrated in Figure 1. 

 

 
Figure 3.  Arrival Stream Geometries 

 
Formulation of the Pairing Problem 

Some preliminary notations and definitions 
needed for problem formulation are presented first. 
Let Y={l, r} represent the set of very closely spaced 
parallel (left and right) runways to land the aircraft 
on, and M={m1, m2, …, mk} represent the set of 
arrival streams for the aircraft to be scheduled for 
landing.   For the arrival streams used in the current 



 

study, we have M={big_sur,  modesto,  oceanic, 
point_reyes,  yosem}. These arrival streams are 
illustrated in Figure 3. 

The set of arriving aircraft to be scheduled is 
denoted by A={a1, a2, …, an}, where ai = (etaN,i, 
[etaEL,i, etaLL,i], [etaER,i, etaLR,i], wi, si, gi) is the record 
for aircraft i.  etaN,i is the nominal estimated time of 
arrival (ETA) of aircraft i at the coupling point. 
[etaEL,i, etaLL,i] and [etaER,i, etaLR,i] are the early and 
late ETA of aircraft i at the left and right coupling 
points, respectively. wi ∈ {S, L, 7, H}, si ∈ M, and gi 
are the wake category, the arrival stream, and the 
pair-group category for aircraft i, respectively. 

The wake separation matrix W is a 4x4 wake 
matrix as shown in Table 2, where entry wij is the 
required safe separation between non-paired aircraft 
of types i and j, with i, j ∈ {S, L, 7, H} and i is ahead of 
j. The target separation window between the 
scheduled times of arrival (STAs) of two aircraft to 
be paired is denoted as tp. For the purpose of this 
study, tp= 15 seconds, and we use the wake 
separation matrix given in Table 2. 

A scheduling solution consists of a Scheduled 
Time of Arrival STAi at the coupling point and a 
runway assignment ri for a (maximal) subset of A.  A 
feasible scheduling solution is one in which a set of 
constraints are satisfied.  Several classes of 
constraints are defined and need to be enforced.  
These include temporal constraints, sequencing 
constraints, separation constraints, pair-group 
constraints, and runway assignment constraints. 

A temporal constraint places a restriction on the 
acceptable range for the STA values of the aircraft 
being scheduled for landing.  In our context, the STA 
for an aircraft should lie within the ETA time 
window at the coupling point for its target runway. 

A sequencing constraint places a restriction on 
the aircraft arrival sequence for the runways.  In other 
words, it limits the acceptable order for the arrival 
aircraft as they pass through their respective coupling 
points.  In our study, no overtaking is allowed among 
aircraft arriving from the same stream.  Hence, within 
each arrival stream, the order of STA values for 
arriving aircraft to the two runways should 
correspond to the order of the aircraft’s nominal ETA 
values at the coupling point. 

A separation constraint defines the minimum 
safe distance among the aircraft as they fly through 
the airspace.  In our context, the wake separation 
matrix and the wake categories of the arriving aircraft 
define the separation constraints.  The separation 
between arriving and non-arriving aircraft is a 
complication that is not considered in the current 
study and could be a subject of future research.  
However, part of the requirements for redesigning the 
airspace and the arrival trajectories was to minimize 
the potential occurrence of separation conflicts 
between arriving and non-arriving aircraft. 

Pair-group constraints impose restrictions on 
the set of aircraft that could be paired.  This is 
included to enable additional level of control on 
which aircraft should not be paired with each other.  
Factors such as aircraft weight and speed profile may 
be used to derive the pair grouping.  Two aircraft 
may be paired only if they belong to the same pair 
group. 

Runway assignment constraints are the rules that 
define the desired or legal runway assignment for the 
arriving aircraft.  We distinguish between single 
aircraft runway assignment rules, and paired aircraft 
runway assignment rules.  The set of runway 
assignment rules R  is the union of the set of single 
aircraft runway assignment rules (R1) and the set of 
paired aircraft runway assignment rules (R2), that is R 
= R1∪R2, with R1={(m, y) | m ∈ M, y ∈ Y} and 
R2={((m1, y1), (m2, y2)) | m1, m2 ∈ M and y1, y2 ∈ Y}. 
A single aircraft runway assignment rule  (m, y) ∈ R1 
indicates that a single aircraft arriving from stream m 
should be scheduled to arrive at runway y, while an 
aircraft-pair runway assignment rule ((m1, y1), (m2, 
y2)) ∈ R2 indicates that two arrival aircraft that are 
going to be paired with the leader arriving from 
stream m1 and the following aircraft arriving from 
stream m2 should be assigned to runways y1 and y2 
respectively.  Also, it should be noted that when in 
conflict, a paired aircraft runway assignment rule 
overrides a single aircraft runway assignment rule.  
The runway assignment rules in use for the HITL 
simulations conducted in [6] will be presented later in 
the paper. 

The Pair-Scheduling Problem (PSP) for landing 
single and paired aircraft to closely spaced parallel 
runways can be formulated as follws:  



 

PSP Instance: A tuple of the form (A, W, tp, R), 
where A={a1, a2, …, an} is a set of aircraft records, 
W is a 4x4 wake separation matrix, tp is the pairing 
window or the target separation window between two 
paired aircraft as they cross their respective coupling 
points, and R is the set of runway assignment rules.  

PSP Objective: To find a feasible scheduling 
solution of a maximal subset of A subject to the 
temporal, sequencing, separation, pair-group, and 
runway assignment constraints. 

To develop a pairing algorithm for solving PSP, 
and use it in the HITL simulations of [6], we started 
from the prototype provided in [4]. Then we made 
several enhancements that addressed some of the 
shortcomings based on new requirements and 
feedback received during an initial pilot study to 
make the approach suitable for use in real-time HITL 
simulations. 
Notes on Computational Complexity 

One of the key questions in studying any 
problem is whether or not there exists an efficient 
algorithm that solves the problem optimally.  
Answering this question in general is not an easy 
task.  A branch of computer science commonly 
referred to as computational complexity is devoted to 
studying this matter, where problems are classified 
into different computational classes. As discussed 
earlier, the PSP problem defined earlier belongs to a 
general class of problems known as Scheduling 
problems.  Many of the scheduling problems belong 
to the NP–hard class of problems. Hence, finding a 
general solution strategy that solves an arbitrary 
instance of these problems optimally in a reasonable 
amount of time is generally considered a hopeless 
pursuit [9, 29]. 

It is not clear whether the PSP problem defined 
earlier belongs to the class of NP–hard problems or 
not. Presenting a proof about the computational 
complexity of PSP requires rigorous mathematical 
exposition, and is beyond the scope of this paper.  
However, some evidence is provided that suggest 
PSP might belong to the NP–hard class of problems.  
In particular, there exist two closely related aircraft 
scheduling problems that are known to be NP–hard. 
These are the aircraft landing problem, which was 
studied by Beasley et al. [23], and the problem of 
parallel aircraft landing with sequence-dependent 

separation requirements.  These problems were 
reported to be NP–hard in [23] and [30], 
respectively. 

It should be noted that during the course of this 
research while attempting to adopt a solution 
strategy, the set of requirements, constraints, and 
control parameters that define a feasible scheduling 
solution were in a constant state of flux.  These 
requirements underwent several rounds of 
adjustments as various issues and limitations 
surfaced. Given the evidence that PSP might belong 
to the NP–hard class of problems, suggested that the 
best course of action might be to seek algorithmic 
solutions that are practical, adaptable, and can 
produce feasible scheduling results very efficiently.  
This required a solution strategy that would be 
flexible enough to be adjusted as the requirements 
and constraints were being stabilized.  On the other 
hand, we needed a prototype that could be developed 
in parallel and integrated into the system for 
conducting the real-time HITL simulations that were 
planned [6].   

The availability of Kupfer’s recent prototype [4] 
and its implementation based on the genetic and 
evolutionary algorithms [31–33] provided a very 
suitable candidate.  The underlying genetic algorithm 
that was used to solve the problem could be adjusted 
and enhanced to suit the needs of the new problem 
with relative ease. These adjustments and 
enhancements will be explained in the following 
section. 

Developing the Pairing Algorithm 
This section describes the enhancements made 

to the initial basic implementation of Kupfer [4], the 
concerns that each enhancement was intended to 
address, and the significance of each of these 
enhancements. A brief overview of Kupfer’s GA-
based algorithm is presented first.  This would set the 
stage for the later discussion where we explain the 
enhancements and adjustments that were made to 
make it suitable for real-time HITL simulations.  

Kupfer’s algorithm consists of three main steps.  
In the first step, an initial population of feasible 
scheduling solutions is created. The next step is the 
optimization phase comprised of a fixed number of 
iterations.  During each iteration in the optimization 
phase, the current population of feasible solutions 



 

undergoes one generation of evolutionary 
optimization, followed by a greedy step to further 
optimize each resulting solution.  In the final phase, 
the best solution encountered so far is reported. Of 
particular interest in the discussions that follow are 
two components of the algorithm.  These are the 
initialization algorithm and the objective function.  
The initialization algorithm is responsible for seeding 
the genetic algorithm with its initial pool of feasible 
scheduling solutions. The objective function is used 
to determine the relative merit of a given scheduling 
solution and operates by associating a cost value to 
each candidate scheduling solution. 

Problem Modeling Enhancements 
The first set of enhancements made to Kupfer’s 

greedy GA approach was applied at the problem 
modeling level.  These adjustments intended to 
extend Kupfer’s approach to fit the requirements of 
the PSP problem formulation.  These enhancements 
included the following: i) implementing the Oceanic 
arrival stream, and ii) extending the algorithm to 
enable different ETA windows for each aircraft at the 
left and right coupling points.  

Improved Solution Space Control 
The next set of enhancements made to Kupfer’s 

greedily enhanced GA approach was applied to 
enable better and more granular control over the 
feasible solution space.  These enhancements are 
explained next. 

Runway Assignment and Hard Pairing Rules 
A major undertaking while developing the 

pairing algorithm was to ensure that the pairing and 
runway assignment rules are properly implemented 
and followed.  These rules were iteratively defined 
after several rounds of discussion among the 
researchers and subject matter experts.  The final set 
of pairing rules adopted for this research can be 
expressed as the union of single aircraft runway 
assignment rules R1 and the paired aircraft runway 
assignment rules R2 as listed below: 

R  = R1  ∪  R2 

R1 = { (big_sur, l), (modesto, r), (oceanic, l), 

           (point_reyes, l), (yosem, r)} 

R2 = { ((point_reyes, l), (oceanic, r)),    

          ((point_reyes, l), (big_sur, r)),  

          ((oceanic, l), (big_sur, r)),    

          ((yosem, l),( modesto, r))} 

The above rules can be explained as follows.   
The rules in R1 indicate that single aircrafts arriving 
from Big Sur, Oceanic, and Point Reyes stream are 
by default assigned to the left runway, while those 
arriving from Modesto and Yosem streams are by 
default assigned to the right runway. The rules in R2 
indicate how the rules in R1 are over-ridden when 
aircrafts are paired.  For example, the first rule 
((point_reyes, l), (oceanic, r)) indicates that for an 
aircraft-pair arriving from the two arrival streams 
Point Reyes and Oceanic, the applicable runway 
assignment rule would be for the aircraft arriving 
from Point Reyes to land on the left runway and for 
the aircraft arriving from Oceanic to land on the right 
runway. 

 
Soft Rules and Preferences 

In addition to the above set of hard rules, there 
were some soft rules based on controller preferences.  
For example, it was desirable not to pair aircraft that 
are by default destined to the same runway, when a 
more or less equivalent choice existed.  As an 
example, unless no better solution existed, it would 
be desirable to avoid pairing two aircraft approaching 
from Modesto and Yosem arrival streams.  Doing so 
would involve a change in the runway assignment, 
requiring manual intervention and coordination that 
would lead to an increase in controller and pilot 
workload.  Such soft rules were handled by lowering 
the weight assigned to a less desirable pair, in the 
objective function that guided the genetic algorithm 
during the search process. 

Manual Override and Forbidden Pairs 
Another important feedback received during 

initial pilot study of the system, was the need to allow 
manual override by the air traffic controllers on the 
pairing solution.  From the beginning, the controllers 
had the option not to accept a suggested pair, giving 
them the final say in the creation of pairs.  However, 
there was a need to communicate an undesirable pair 
to the pairing algorithm so that the same undesirable 
pair would not be suggested over and over again.  
This was implemented by maintaining a list of 
forbidden pairs.  A forbidden pair is a pair of aircraft 
with designated leader and follower, which the 



 

pairing algorithm should not produce.  Once the 
controllers identify a pair as forbidden, the pairing 
algorithm would add it to its list of forbidden pairs. 
These pairs would no longer show up as candidate 
pairs in the future. To implement this during the 
optimization, the forbidden pairs list was consulted 
during the creation of the initial population seed, 
during the course of the optimization, and once again 
when reporting the pairing results.  

In order to gradually lead the exploration out of 
the undesirable portion of the search space, the 
objective function was used to discourage forbidden 
pairs from appearing in a solution by giving such 
pairs a much lower weight.  To ensure no forbidden 
pairs would leak into the final pairing solution, a 
pruning of the pairing solution was done just before 
reporting the pairing result to the controllers.  

Implementing and honoring the forbidden pairs 
feature was considered a key requirement for the 
HITL simulations.  However, an important metric for 
the evaluation of the pairing algorithm is the quality 
of the pairing results it can produce.  The goal was to 
ensure the pairing results produced and presented to 
the controllers were of high quality, so that maximum 
percentage of the presented pairs were accepted, thus 
minimizing the need for the forbidden pair feature to 
be exercised. In the experimental results section we 
will show statistics on how often the forbidden pairs 
features were exercised during the HITL runs. 

Rewriting the Objective Function 
The objective function was redesigned from 

scratch with all the requirements, including the new 
ones in mind.  The revised objective function 
associated a cost to each scheduling solution 
evaluated during the course of optimization, and the 
genetic algorithm was setup to find the scheduling 
solution of minimum cost.  For a given scheduling 
solution, the following cost function was used: 
 
        cost   =  a0 + a1 . P + a2 . S + a3 . maxSTA 
 
where P is the effective number of scheduled aircraft 
pairs, S is the number of scheduled aircraft singles, 
maxSTA is the largest STA among the scheduled 
aircraft, and a0, a1, a2, a3, are parameters used to 
shift and scale the cost factors appropriately.  Among 
these, a0 was chosen to shift the cost values to a 
meaningful range, and was not really significant, 
while a1, a2, a3, were selected in order to provide the 

relative significance for various cost factors.  The 
values used for these parameters in our experiments 
were as follows: 
 
     a0 =  10,000  
     a1 =  100  
     a2 =  10  
     a3 =  0.05  
 

Recall from earlier discussion that certain pairs 
were undesirable, or forbidden.  In order to allow a 
smooth search space exploration, an attenuation 
factor was used to reduce the contribution of the 
undesirable or forbidden pairs to P.  The undesirable 
pairs were those involving aircraft that would require 
a change in their assigned runways. An attenuation 
factor of 0.8 was used to cut the contribution of such 
pairs to P by 20% as compared to a regular pair.  For 
the forbidden pairs, an attenuation factor of 0.1 was 
used to make the contribution of such a pair to the 
objective function relatively insignificant. This would 
cause the algorithm to look harder for scheduling 
solutions that do not contain forbidden pairs.  Note 
that we did not assign a negative cost factor to 
forbidden pairs, as this would cause interference with 
other cost factors.  As a final assurance, any 
forbidden pairs were always filtered out of the 
pairing solution before reporting the list of aircraft 
pairs to the controllers. 

Improving the Effectiveness of Finding Pairs  
Another significant challenge that had to be 

overcome during the development phase of the 
pairing algorithm was to ensure that it could find and 
schedule as many aircraft pairs as possible.  It was 
noticed, however, that for some relatively simple 
scenarios, the algorithm did not find pairs that were 
easily detected by simple visual inspection of the 
arrival streams.   

Identifying Root Causes of the Problem 
Careful investigation suggested that the main 

contributor to this degraded performance was the 
algorithm used for selecting the initial population 
pool for the genetic algorithm.  In particular, two 
aspects of the initialization algorithm needed 
improvement.   

The first was that the initial population was 
obtained by making repeated calls to a deterministic 
algorithm.  This would result in the same exact 



 

scheduling solution to be returned upon each call, 
thus eliminating population diversity in the initial 
population pool.  The lack of population diversity 
caused significant deterioration in the solution quality 
that is usually achievable within an acceptable 
number of generations of the genetic algorithm.   

The second issue with the initial population 
selection was that the algorithm did not explicitly 
seek to find solutions containing aircraft pairs.  
Instead, the algorithm simply settled for any feasible 
solution regardless of whether or not it contained any 
aircraft pairs.  These two issues combined, often 
resulted in an initial pool of individual solutions 
consisting of multiple copies of the same exact 
feasible solution not containing any aircraft pairs. 

As a result, the initial population was often quite 
suboptimal and contained no diversity.  This resulted 
in a significant impediment to the genetic algorithm’s 
ability to escape from the local minima and find 
solutions of superior quality. 

New GA Initialization Algorithm 
To address the quality degradation issue and to 

boost the algorithm’s ability in finding adequate 
number of aircraft pairs, a new and improved GA 
initialization algorithm was developed.  The new 
approach still used the idea of calling the same (new) 
algorithm multiple times to produce the seed 
population for the genetic algorithm.  However, 
special attention was given to two aspects of the 
algorithm, based on the root causes identified for 
degraded quality, as discussed earlier.  First, the new 
algorithm was non-deterministic, producing different 
feasible solutions on consecutive calls.  Secondly, the 
algorithm was explicitly designed to target finding 
feasible solutions that maximize the number of 
aircraft pairs.   

This was done using a very efficient greedy non-
deterministic algorithm for solving the PSP problem 
that worked off of a partial schedule, which was 
constructively formed starting from an empty set.  
The key observation was that at any given moment in 
time, the set of choices for the next aircraft to be 
scheduled for landing is the set of aircraft leading the 
pack in each of the arrival streams. In other words, 
the algorithm would only need to focus on the first 
unscheduled aircraft on each arrival stream, arriving 
the coupling point.  This observation was utilized to 
reduce the search space significantly.  This was 
achieved by maintaining the set of arrival aircraft 

approaching on different streams using separate 
queues, and focusing on the first candidate in each 
queue when searching for the next aircraft to be 
scheduled.  

The non-determinism was achieved by selecting 
a random STA for the best candidate within the 
feasible range, while satisfying all the constraints.  
Since the focus was still among the first arriving 
aircraft from each arrival stream, this algorithm is a 
deterministic greedy pairing algorithm using the First 
Come First Served (FCFS) heuristic. The outline of 
the algorithm is given below: 

1. Create an empty Schedule. 

2. Create arrival stream queues, each sorted in 
the increasing order of the nominal ETA 
values. 

3. Pop the first aircraft from each non-empty 
queue and add it to candSet . 

4. If candSet is empty no more aircraft can be 
scheduled legally.  Report the schedule 
constructed so far and exit. 

5. Otherwise, evaluate each of the aircraft in 
candSet to see if it can be legally scheduled, 
given the partial schedule constructed so far. 
Remove from candSet any aircraft that 
cannot be scheduled legally. 

6. Let B ∈ candSet be the aircraft that could 
be scheduled earliest while satisfying all 
constraints, or B = ∅ if candSet is empty. 

7. If (B = ∅), go to step 3. 

8. Remove B from candSet, schedule B 
randomly in its legal range. 

9. Pop the next aircraft from the stream 
containing B (if there exists one) and add it 
to candSet. 

10. Go to step 4 

Much of the algorithm is quite straightforward. 
The most interesting and involved steps in this 
algorithm are steps 5 and 6. Step 5 is a pruning step 
to eliminate from consideration any aircraft in the 
candSet that cannot be legally scheduled given the 
partial schedule that is constructed so far.  Note that 
if an aircraft cannot be legally scheduled, given the 
partial schedule that is constructed so far, there is no 



 

need to consider it in the future either.  This is 
because of the constructive and greedy nature of the 
algorithm.  Therefore, we can safely eliminate these 
aircraft from consideration.  Step 6 seeks to find the 
best among the remaining candidate aircraft in 
candSet.  It is implemented using a case-based 
analysis that looks at whether or not the last 
scheduled aircraft was single or paired.  Then it looks 
at all the choices to pick the aircraft that can be 
scheduled as early as possible, while satisfying all the 
scheduling constraints. The choice that gives the 
minimum possible STA value meeting all the wake 
separation, pairing, pair grouping, and other 
constraints is returned as the best choice stored in B. 

Once the best choice among the candidate 
aircraft is identified, it is scheduled within its legal 
range in a randomized fashion in step 8.  This step 
provides the desired non-determinism in the initial 
population pool, resulting in diversity of the seed 
population. The genetic algorithm can then use this 
diversity for much more effective exploration of the 
solution space using genetic mutation and crossover 
operations. 

Experimental Results 
The pairing algorithm described in this paper 

was implemented in C/C++ using the Genetic 
Algorithm Library GAlib [34] and integrated into the 
ground air traffic control system for HITL 
simulations [6].  A stand-alone version was also 
implemented to conduct off-line performance and 
stress testing.  The stand-alone runtimes are 
performed on a Mac Pro machine with 2 x 2.8 GHz 
Quad-Core Intel Xeon processor. This section 
presents the results of experiments conducted to 
measure the performance, scalability, and quality of 
the pairing results produced by the pairing algorithm. 

Performance Results 
The first set of results, presented in Table 3, 

shows the impact of the enhancements made to the 
GA initialization algorithm on the number of pairs 
discovered by the pairing algorithm.  Each row of the 
table presents one of the scenarios that were tested. 
The first six test cases (row 1 through 6) were chosen 
randomly from those that were being developed in 
preparation of the HITL simulations [6].  The last test 
case (row 7) shows the scenario used to help identify 

the issues with the original GA initialization 
algorithm. 

As Table 3 shows, with the new initialization 
algorithm, significantly more number of aircraft pairs 
were found and scheduled.  In many cases the 
original algorithm failed to find any pairs, even after 
evolving for several thousand generations. The total 
numbers of discovered pairs in these runs were 6 and 
40, using the original and improved GA initialization 
algorithms, respectively.  Note that this improvement 
was achieved at the expense of only about 5% 
increase in the overall runtime. 

 

Table 3. Impact of GA Initialization Algorithm 
 

Test  

 

# A/C 

Original 

#pairs    runtime (s) 
Improved 

#pairs   runtime (s) 

1 11 0 1 4 2 

2 12 1 3 5 3 

3 14 5 4 7 4 

4 16 0 2 6 3 

5 18 0 2 5 2 

6 20 0 3 6 3 

7 34 0 6 7 5 

Total 6 21 40 22 

 

The scenarios developed for the HITL 
simulations [6] were intended to exercise the system 
in different operating modes.  The main objective in 
preparing these scenarios was to provide coverage for 
the operational procedures that provide insights into 
the proper allocation of tasks under TACEC for 
automation and the air traffic controllers. These 
scenarios were quite helpful in revealing certain 
limitations of the original implementation of the 
pairing algorithm and identifying potential areas that 
needed enhancements.  However, they were not 
developed to stress the pairing algorithm sufficiently. 
In order to conduct a more detailed evaluation of the 
new GA initialization algorithm, a large suite of 
stress test scenarios were generated using a 
randomized parametric algorithm for generating 
arrival scenarios.  The parameters included the 
number of arrival streams, the number of aircraft, the 
number of pair groups, and the minimum and 



 

maximum spacing requirements between the arrival 
times of consecutive aircraft on the same arrival 
stream.   

Experiments were conducted to see the impact 
of the GA initialization algorithm on the performance 
of the pairing algorithm.  Table 4 shows the results of 
these experiments.  Each row in this table 
corresponds to over two hundred different scenarios, 
each with the same number of aircraft.  The average 
number of pairs and the average runtime in seconds 
are shown on each row for all the runs with the same 
number of aircraft in the scenario. 

The table shows the average value for the 
number of pairs and runtime across all the runs with 
the same number of aircraft in the scenario as 
specified in the first column. It can be seen that the 
pairing algorithm with the original GA initialization 
algorithm had significant difficulty in scheduling 
aircraft pairs, while the implementation of the pairing 
algorithm using the improved version of the GA 
initialization algorithm found many pairs. This came 
at the expense of about three-fold increase in runtime, 
which is reasonable considering the improved 
performance in terms of the number of aircraft pairs 
scheduled.  Besides, as discussed in the next section 
the runtimes remained quite manageable and within 
the expected response time requirements for a real-
time application. 

Table 4. Stress Test Scenario Result Averages 
 

# A/C 

Original 

#pairs       runtime (s) 

Improved 

#pairs         runtime (s) 

10 0.03 1.20 1.42 2.11 

20 0.02 2.16 4.30 4.64 

30 0.00 3.17 7.12 7.40 

40 0.00 4.26 11.76 10.66 

50 0.00 5.47 15.76 14.26 

60 0.00 6.64 18.75 18,28 

70 0.00 7.83 21.62 22.02 

80 0.00 9.04 25.02 26.70 

90 0.00 10.31 29.93 30.84 

100 0.00 11.50 32.74 35.54 

Total 0.05 61.58 168.42 173.45 

 

To show the total number of aircraft that could 
be landed in each scenario, we need to include the 
number of single aircraft that were scheduled for 
landing as well.  Figure 4 shows the total number of 
aircraft scheduled for landing on average, for the 
stress test scenarios that were used to obtain the 
results presented in Table 4. 

As shown in Figure 4, the implementation with 
the original GA initialization algorithm was not very 
successful at finding and scheduling pairs of aircraft 
for simultaneous landing.  As a result, the total 
number of aircraft that were scheduled for landing 
was considerably lower when we used the original 
GA initialization algorithm, although the number of 
aircraft scheduled for single landing was generally 
equal or more than those obtained using the improved 
GA initialization algorithm. 

In the rest of the experimental results section, 
unless explicitly mentioned otherwise, the improved 
GA initialization algorithm is used and implied for all 
the reported results. 

Figure 4.  Impact of the Initialization Algorithm 
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Efficiency and Scalability Results 
An important characteristic of a pairing 

algorithm to be used for real-time applications is a 
measure of its scalability.  An algorithm is considered 
efficient if its runtime scales sufficiently slowly. This 
allows its application on large instances and results in 
response times that are acceptable for real-time 
applications. The same stress test scenarios used to 
generate the results for Table 4 were employed to test 
the scalability of the GA based pairing algorithm.  

Figures 5 and 6 show the percentage of aircraft 
successfully scheduled for landing, and the runtime 
of the pairing algorithm, respectively, as a function of 
the number of aircraft in the scenario.  In Figure 5, 
the percentage of aircraft successfully scheduled is 
further broken down into its paired-landing and 
single-landing constituents. 

As shown in Figure 5, the percentage of the total 
aircraft successfully scheduled for landing stays at a 
respectable value, well above 95% even for problem 
instances containing up to one hundred aircraft.  At 
the same time, the percentage of the aircraft that are 
scheduled for paired landing comprises a significant 
portion of the total, ranging from 30% to more than 
60% of all the aircraft.  This means that the algorithm 
performs in a very scalable fashion with no sign of 
deterioration as the number of arriving aircraft in the 
problem instance approaches one hundred or more. 

Figure 5. Percentage of Scheduled Aircraft 

As Figure 6 shows, a 100-aircraft instance of the 
problem required no more than 40 seconds to solve, 
on average. Most of the scenarios in the HITL 
simulations contained 60 or fewer aircraft, requiring 
no more than 20 seconds to solve, on average. As 

discussed earlier, the pairing occurs about 30 minutes 
prior to the aircraft reach the terminal area boundary.  
A pairing algorithm with less than half a minute of 
turnaround time proved quite adequate in the HITL 
simulation that was conducted.  On most instances 
the pairing result was available in less than 10 
seconds since the number of aircraft in the problem 
instance was often 30 or less. 

Quality of the Scheduling Results 
Note that ultimately making a judgment call 

about the quality and suitability of an aircraft pair 
identified for simultaneous landing is the 
responsibility of the human operators and air traffic 
controllers.  To measure how good the pairing 
algorithm’s results were, the HITL simulations were 
examined to see how often the controllers exercised 
the forbidden pair feature. The result of this 
investigation is shown in Figure 7. 

Figure 6.  Runtime Profile of the Algorithm 

 

 

 

 

 

 

 

 

 

Figure 7.  Percentage of Manual Override Usage 

The data that was collected during the HITL 
simulation consisted of 18 runs, each representing a 

     1   2    3    4   5    6   7    8   9   10  11 12  13  14 15  16  17    18 

1 
2 

 

7 
6 
5 

3 
4 

Simulation runs 

Percentage of manual override per run 

Just under 3% manual override, on average 

10 20 30 40 50 70 80 90 100 60 

10 
20 

100 
90 
80 
70 
60 
50 

30 
40 

# A/C in the test scenario 

Percentage of A/C scheduled  

Total 
Paired 
Single 

10 20 30 40 50 70 80 90 100 60 

  5 
10 

35 
30 
25 

15 
20 

# A/C in the test scenario 

Runtime (s) 



 

few hours of simulation.  During the course of these 
experiments the pairing scheduler suggested a total of 
9,381 pairs.  The air traffic controllers accepted all 
pairs except for 281 (less than 3%), which were 
identified as forbidden pairs.  In other words, the 
pairing algorithm produced results that were 
acceptable in over 97% of the instances. This is a 
very encouraging result and speaks to the 
effectiveness of the objective function that was 
developed to help guide the search process. 
Conclusion 

An improved pairing algorithm for Very Closely 
Spaced Parallel Approaches is presented.  An earlier 
greedily enhanced genetic algorithm prototype was 
adopted, extended and enhanced in several ways to 
make it suitable for automatic pairing and scheduling 
of paired and single aircraft and for use in a recent 
HITL simulation.  The key contributions of this paper 
include:  

• Extending the problem formulation and extending 
the basic Implementation to allow its application 
to the extended problem. 

• Evaluating the performance of the basic algorithm 
and identifying GA initialization algorithm as root 
cause of its degraded performance. 

• Implementation of a much more effective 
randomized GA initialization algorithm that 
specifically seeks to maximize the number of pairs 
while meeting all the constraints. 

• Development of a simplified and improved 
objective function to guide the search process.   

• Putting in place proper controls in the algorithm to 
guarantee strict adherence to hard rules and 
preferential adherence to soft rules. 

• Implementation of forbidden-pair feature to enable 
air traffic controllers to instruct the pairing 
algorithm about undesirable pairs. 

The resulting algorithm was integrated and used 
successfully in recent HITL simulations conducted at 
NASA Ames Research Center. In addition to the 
scheduling scenarios that were part of the HITL 
simulations, an extensive set of stress test scenarios 
were developed to exercise the pairing algorithm 
more thoroughly.  Experimental results indicate: 

• The runtime of the proposed algorithm scales 
linearly with the number of aircraft in the problem 
instance, with acceptable response time making it 
suitable for real-time application.   

• The proposed pairing algorithm succeeded in 
finding significantly more number of pairs, 
compared to its predecessor. 

• The pairing results quality was high despite its fast 
running time.  Analysis of the HITL simulation 
results indicated that over 97% of the pairs 
suggested by the algorithm were accepted by the 
air traffic controllers. 

Some generalizations of the problem that might 
be of interest for future research include extensions to 
more than two parallel runways, and inclusion of 
additional constraints and objectives such as 
balancing the traffic on the runways, as well as 
simultaneous consideration of arrival and departure 
traffic.  Conducting research into paired arrival and 
departure scheduling has other practical long-term 
applications. The insights gained from these studies 
could help extend the capabilities of new and 
improved tools for terminal area scheduling such as 
those currently under development [5].  
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